Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues.

Identifieur interne : 000019 ( Main/Exploration ); précédent : 000018; suivant : 000020

Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues.

Auteurs : Linus De Roo [Belgique] ; Roberto Luis Salom N [Belgique] ; Jacek Oleksyn [Pologne] ; Kathy Steppe [Belgique]

Source :

RBID : pubmed:32416019

Abstract

Photosynthesis in woody tissues (Pwt ) is less sensitive to water shortage than in leaves, hence, Pwt might be a crucial carbon source to alleviate drought stress. To evaluate the impact of Pwt on tree drought tolerance, woody tissues of 4-m-tall drought-stressed Populus tremula trees were subjected to a light-exclusion treatment across the entire plant to inhibit Pwt . Xylem water potential (Ψxylem ), sap flow ( FH2O ), leaf net photosynthesis (Pn,l ), stem diameter variations (ΔD), in vivo acoustic emissions in stems (AEs) and nonstructural carbohydrate concentrations ([NSC]) were monitored to comprehensively assess water and carbon relations at whole-tree level. Under well-watered conditions, Pwt kept Ψxylem at a higher level, lowered FH2O and had no effect on [NSC]. Under drought, Ψxylem , FH2O and Pn,l in light-excluded trees rapidly decreased in concert with reductions in branch xylem starch concentration. Moreover, sub-daily patterns of ΔD, FH2O and AEs were strongly related, suggesting that in vivo AEs may inform not only about embolism events, but also about capacitive release and replenishment of stem water pools. Results highlight the importance of Pwt in maintaining xylem hydraulic integrity under drought conditions and in sustaining NSC pools to potentially limit increases in xylem tension.

DOI: 10.1111/nph.16662
PubMed: 32416019


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues.</title>
<author>
<name sortKey="De Roo, Linus" sort="De Roo, Linus" uniqKey="De Roo L" first="Linus" last="De Roo">Linus De Roo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Salom N, Roberto Luis" sort="Salom N, Roberto Luis" uniqKey="Salom N R" first="Roberto Luis" last="Salom N">Roberto Luis Salom N</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oleksyn, Jacek" sort="Oleksyn, Jacek" uniqKey="Oleksyn J" first="Jacek" last="Oleksyn">Jacek Oleksyn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32416019</idno>
<idno type="pmid">32416019</idno>
<idno type="doi">10.1111/nph.16662</idno>
<idno type="wicri:Area/Main/Corpus">000299</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000299</idno>
<idno type="wicri:Area/Main/Curation">000299</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000299</idno>
<idno type="wicri:Area/Main/Exploration">000299</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues.</title>
<author>
<name sortKey="De Roo, Linus" sort="De Roo, Linus" uniqKey="De Roo L" first="Linus" last="De Roo">Linus De Roo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Salom N, Roberto Luis" sort="Salom N, Roberto Luis" uniqKey="Salom N R" first="Roberto Luis" last="Salom N">Roberto Luis Salom N</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oleksyn, Jacek" sort="Oleksyn, Jacek" uniqKey="Oleksyn J" first="Jacek" last="Oleksyn">Jacek Oleksyn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photosynthesis in woody tissues (P
<sub>wt</sub>
) is less sensitive to water shortage than in leaves, hence, P
<sub>wt</sub>
might be a crucial carbon source to alleviate drought stress. To evaluate the impact of P
<sub>wt</sub>
on tree drought tolerance, woody tissues of 4-m-tall drought-stressed Populus tremula trees were subjected to a light-exclusion treatment across the entire plant to inhibit P
<sub>wt</sub>
. Xylem water potential (Ψ
<sub>xylem</sub>
), sap flow (
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
), leaf net photosynthesis (P
<sub>n,l</sub>
), stem diameter variations (ΔD), in vivo acoustic emissions in stems (AEs) and nonstructural carbohydrate concentrations ([NSC]) were monitored to comprehensively assess water and carbon relations at whole-tree level. Under well-watered conditions, P
<sub>wt</sub>
kept Ψ
<sub>xylem</sub>
at a higher level, lowered
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
and had no effect on [NSC]. Under drought, Ψ
<sub>xylem</sub>
,
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
and P
<sub>n,l</sub>
in light-excluded trees rapidly decreased in concert with reductions in branch xylem starch concentration. Moreover, sub-daily patterns of ΔD,
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
and AEs were strongly related, suggesting that in vivo AEs may inform not only about embolism events, but also about capacitive release and replenishment of stem water pools. Results highlight the importance of P
<sub>wt</sub>
in maintaining xylem hydraulic integrity under drought conditions and in sustaining NSC pools to potentially limit increases in xylem tension.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32416019</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16662</ELocationID>
<Abstract>
<AbstractText>Photosynthesis in woody tissues (P
<sub>wt</sub>
) is less sensitive to water shortage than in leaves, hence, P
<sub>wt</sub>
might be a crucial carbon source to alleviate drought stress. To evaluate the impact of P
<sub>wt</sub>
on tree drought tolerance, woody tissues of 4-m-tall drought-stressed Populus tremula trees were subjected to a light-exclusion treatment across the entire plant to inhibit P
<sub>wt</sub>
. Xylem water potential (Ψ
<sub>xylem</sub>
), sap flow (
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
), leaf net photosynthesis (P
<sub>n,l</sub>
), stem diameter variations (ΔD), in vivo acoustic emissions in stems (AEs) and nonstructural carbohydrate concentrations ([NSC]) were monitored to comprehensively assess water and carbon relations at whole-tree level. Under well-watered conditions, P
<sub>wt</sub>
kept Ψ
<sub>xylem</sub>
at a higher level, lowered
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
and had no effect on [NSC]. Under drought, Ψ
<sub>xylem</sub>
,
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
and P
<sub>n,l</sub>
in light-excluded trees rapidly decreased in concert with reductions in branch xylem starch concentration. Moreover, sub-daily patterns of ΔD,
<mml:math>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mi>O</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
and AEs were strongly related, suggesting that in vivo AEs may inform not only about embolism events, but also about capacitive release and replenishment of stem water pools. Results highlight the importance of P
<sub>wt</sub>
in maintaining xylem hydraulic integrity under drought conditions and in sustaining NSC pools to potentially limit increases in xylem tension.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Roo</LastName>
<ForeName>Linus</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3627-1406</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salomón</LastName>
<ForeName>Roberto Luis</ForeName>
<Initials>RL</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-2674-1731</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oleksyn</LastName>
<ForeName>Jacek</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steppe</LastName>
<ForeName>Kathy</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6252-0704</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>G.0941.15N</GrantID>
<Agency>Research Foundation Flanders (FWO)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>665501</GrantID>
<Agency>European Union's Horizon 2020</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus tremula </Keyword>
<Keyword MajorTopicYN="N">acoustic emissions</Keyword>
<Keyword MajorTopicYN="N">corticular photosynthesis</Keyword>
<Keyword MajorTopicYN="N">drought-induced tree mortality</Keyword>
<Keyword MajorTopicYN="N">nonstructural carbohydrates</Keyword>
<Keyword MajorTopicYN="N">stem recycling photosynthesis</Keyword>
<Keyword MajorTopicYN="N">woody tissue photosynthesis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32416019</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16662</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Rome: FAO.</Citation>
</Reference>
<Reference>
<Citation>Aschan G, Wittmann C, Pfanz H. 2001. Age-dependent bark photosynthesis of aspen twigs. Trees 15: 431-437.</Citation>
</Reference>
<Reference>
<Citation>Ávila E, Herrera A, Tezara W. 2014. Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica 52: 3-15.</Citation>
</Reference>
<Reference>
<Citation>Ávila-Lovera E, Zerpa AJ, Santiago LS. 2017. Stem photosynthesis and hydraulics are coordinated in desert plant species. New Phytologist 216: 1119-1129.</Citation>
</Reference>
<Reference>
<Citation>Begg JE, Turner NC. 1970. Water potential gradients in field tobacco. Plant Physiology 46: 343-346.</Citation>
</Reference>
<Reference>
<Citation>Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K. 2013a. Internal recycling of respired CO2 may be important for plant functioning under changing climate regimes. Plant Signaling and Behavior 8: e27530.</Citation>
</Reference>
<Reference>
<Citation>Bloemen J, Mcguire MA, Aubrey DP, Teskey RO, Steppe K. 2013b. Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytologist 197: 555-565.</Citation>
</Reference>
<Reference>
<Citation>Bloemen J, Vergeynst LL, Overlaet-Michiels L, Steppe K. 2016. How important is woody tissue photosynthesis in poplar during drought stress? Trees - Structure and Function 30: 63-72.</Citation>
</Reference>
<Reference>
<Citation>Cernusak LA, Cheesman AW. 2015. The benefits of recycling: how photosynthetic bark can increase drought tolerance. New Phytologist 208: 995-997.</Citation>
</Reference>
<Reference>
<Citation>Cernusak LA, Hutley LB. 2011. Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of Eucalyptus miniata. Plant Physiology 155: 515-523.</Citation>
</Reference>
<Reference>
<Citation>Cernusak LA, Marshall JD. 2000. Photosynthetic refixation in branches of Western White Pine. Functional Ecology 14: 300-311.</Citation>
</Reference>
<Reference>
<Citation>Cochard H, Delzon S. 2013. Hydraulic failure and repair are not routine in trees. Annals of Forest Science 70: 659-661.</Citation>
</Reference>
<Reference>
<Citation>De Baerdemaeker NJF, Salomón RL, De Roo L, Steppe K. 2017. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation. New Phytologist 216: 720-727.</Citation>
</Reference>
<Reference>
<Citation>De Roo L, Salomón RL, Steppe K. 2020. Woody tissue photosynthesis reduces stem CO2 efflux by half and remains unaffected by drought stress in young Populus tremula trees. Plant, Cell & Environment 43: 981-991.</Citation>
</Reference>
<Reference>
<Citation>De Roo L, Vergeynst LL, De Baerdemaeker NJF, Steppe K. 2016. Acoustic emissions to measure drought-induced cavitation in plants. Applied Sciences (Switzerland) 6: 71.</Citation>
</Reference>
<Reference>
<Citation>Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R. 2014. Nonstructural carbon in woody plants. Annual Review of Plant Biology 65: 667-687.</Citation>
</Reference>
<Reference>
<Citation>Haissig BE, Dickson RE. 1979. Starch measurement in plant tissue using enzymatic hydrolysis. Physiologia Plantarum 47: 151-157.</Citation>
</Reference>
<Reference>
<Citation>Hansen J, Møller I. 1975. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry 68: 87-94.</Citation>
</Reference>
<Reference>
<Citation>Hartmann H, McDowell NG, Trumbore S. 2015. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2. Tree Physiology 35: 243-252.</Citation>
</Reference>
<Reference>
<Citation>Hartmann H, Trumbore S. 2016. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. New Phytologist 211: 386-403.</Citation>
</Reference>
<Reference>
<Citation>Hölttä T, Cochard H, Nikinmaa E, Mencuccini M. 2009. Capacitive effect of cavitation in xylem conduits: results from a dynamic model. Plant, Cell & Environment 32: 10-21.</Citation>
</Reference>
<Reference>
<Citation>Hölttä T, Vesala T, Nikinmaa E, Perämäki M, Siivola E, Mencuccini M. 2005. Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism. Tree Physiology 25: 237-243.</Citation>
</Reference>
<Reference>
<Citation>Hubeau M, Mincke J, Vanhove C, Courtyn J, Vandenberghe S, Steppe K. 2019. Plant-PET to investigate phloem vulnerability to drought in Populus tremula under changing climate regimes. Tree Physiology 39: 211-221.</Citation>
</Reference>
<Reference>
<Citation>Jackson GE, Grace J. 1996. Field measurements of xylem cavitation: are acoustic emissions useful? Journal of Experimental Botany 47: 1643-1650.</Citation>
</Reference>
<Reference>
<Citation>Klein T, Hoch G. 2015. Tree carbon allocation dynamics determined using a carbon mass balance approach. New Phytologist 205: 147-159.</Citation>
</Reference>
<Reference>
<Citation>Klein T, Hoch G, Yakir D, Körner C. 2014. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiology 34: 981-992.</Citation>
</Reference>
<Reference>
<Citation>Klein T, Zeppel MJB, Anderegg WRL, Bloemen J, De Kauwe MG, Hudson P, Ruehr NK, Powell TL, von Arx G, Nardini A. 2018. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecological Research 33: 839-855.</Citation>
</Reference>
<Reference>
<Citation>Körner C. 2015. Paradigm shift in plant growth control. Current Opinion in Plant Biology 25: 107-114.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Gu L, Yu Y, Huang P, Wu Z, Zhang Q, Qian Y, Wan X, Sun Z. 2019. Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. Plant, Cell & Environment 42: 2584-2596.</Citation>
</Reference>
<Reference>
<Citation>Long SP, Hällgren J-E. 1993. Measurement of CO2 assimilation by plants in the field and the laboratory. In: Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP, eds. Photosynthesis and production in a changing environment: a field and laboratory manual. Dordrecht, the Netherlands: Springer, 129-167.</Citation>
</Reference>
<Reference>
<Citation>Martinez-Vilalta J, Anderegg WRL, Sapes G, Sala A. 2019. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytologist 223: 22-32.</Citation>
</Reference>
<Reference>
<Citation>Martin-StPaul N, Delzon S, Cochard H. 2017. Plant resistance to drought depends on timely stomatal closure. Ecology Letters 20: 1437-1447.</Citation>
</Reference>
<Reference>
<Citation>Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR. 2009. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology 23: 922-930.</Citation>
</Reference>
<Reference>
<Citation>Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM. 2010. The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164: 287-296.</Citation>
</Reference>
<Reference>
<Citation>Milburn JA. 1973. Cavitation studies on whole Ricinus plants by acoustic detection. Planta 112: 333-342.</Citation>
</Reference>
<Reference>
<Citation>Morey RD. 2008. Confidence intervals from normalized data: a correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology 4: 61-64.</Citation>
</Reference>
<Reference>
<Citation>Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany 62: 1715-1729.</Citation>
</Reference>
<Reference>
<Citation>Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133-142.</Citation>
</Reference>
<Reference>
<Citation>Nilsen ET, Sharifi MR. 1997. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats. American Journal of Botany 84: 1707-1713.</Citation>
</Reference>
<Reference>
<Citation>Pantin F, Simonneau T, Muller B. 2012. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist 196: 349-366.</Citation>
</Reference>
<Reference>
<Citation>Ponomarenko A, Vincent O, Pietriga A, Cochard H, Badel E, Marmottant P. 2014. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood. Journal of the Royal Society, Interface / the Royal Society 11: 1-7.</Citation>
</Reference>
<Reference>
<Citation>Puri E, Hoch G, Körner C. 2015. Defoliation reduces growth but not carbon reserves in Mediterranean Pinus pinaster trees. Trees - Structure and Function 29: 1187-1196.</Citation>
</Reference>
<Reference>
<Citation>R Core Team. 2018. R (3.5.2): A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.</Citation>
</Reference>
<Reference>
<Citation>Rosner S, Karlsson B, Konnerth J, Hansmann C. 2009. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation. Tree Physiology 29: 1419-1431.</Citation>
</Reference>
<Reference>
<Citation>Rosner S, Klein A, Wimmer R, Karlsson B, Rosner S. 2006. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood? New Phytologist 171: 105-116.</Citation>
</Reference>
<Reference>
<Citation>Sala A, Woodruff DR, Meinzer FC. 2012. Carbon dynamics in trees: feast or famine? Tree Physiology 32: 764-775.</Citation>
</Reference>
<Reference>
<Citation>Saveyn A, Steppe K, Ubierna N, Dawson TE. 2010. Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant, Cell & Environment 33: 1949-1958.</Citation>
</Reference>
<Reference>
<Citation>Schenk HJ, Espino S, Romo DM, Nima N, Do AYT, Michaud JM, Papahadjopoulos-Sternberg B, Yang J, Zuo YY, Steppe K et al. 2017. Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiology 173: 1177-1196.</Citation>
</Reference>
<Reference>
<Citation>Schenk HJ, Steppe K, Jansen S. 2015. Nanobubbles: a new paradigm for air-seeding in xylem. Trends in Plant Science 20: 199-205.</Citation>
</Reference>
<Reference>
<Citation>Schmitz N, Egerton JJG, Lovelock CE, Ball MC. 2012. Light-dependent maintenance of hydraulic function in mangrove branches: do xylary chloroplasts play a role in embolism repair? New Phytologist 195: 40-46.</Citation>
</Reference>
<Reference>
<Citation>Sevanto S, Mcdowell NG, Dickman LT, Pangle R, Pockman WT. 2014. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment 37: 153-161.</Citation>
</Reference>
<Reference>
<Citation>Smith DM, Allen SJ. 2007. Measurement of sap flow in plant stems. Journal of Experimental Botany 47: 1833-1844.</Citation>
</Reference>
<Reference>
<Citation>Sorz J, Hietz P. 2006. Gas diffusion through wood: implications for oxygen supply. Trees - Structure and Function 20: 34-41.</Citation>
</Reference>
<Reference>
<Citation>Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA. 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology 26: 257-273.</Citation>
</Reference>
<Reference>
<Citation>Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO. 2007. Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems. Functional Plant Biology 34: 785.</Citation>
</Reference>
<Reference>
<Citation>Steppe K, Sterck F, Deslauriers A. 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science 20: 1-9.</Citation>
</Reference>
<Reference>
<Citation>Tarvainen L, Wallin G, Lim H, Linder S, Oren R, Löfvenius MO, Räntfors M, Tor-Ngern P, Marshall J. 2018. Photosynthetic refixation varies along the stem and reduces CO2 efflux in mature boreal Pinus sylvestris trees. Tree Physiology 38: 558-569.</Citation>
</Reference>
<Reference>
<Citation>Teskey RO, Saveyn A, Steppe K, McGuire MA. 2008. Origin, fate and significance of CO2 in tree stems. New Phytologist 177: 17-32.</Citation>
</Reference>
<Reference>
<Citation>Tyree MT, Ewers FW. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360.</Citation>
</Reference>
<Reference>
<Citation>Vandegehuchte MW, Bloemen J, Vergeynst LL, Steppe K. 2015. Woody tissue photosynthesis in trees: salve on the wounds of drought? New Phytologist 208: 998-1002.</Citation>
</Reference>
<Reference>
<Citation>Vandegehuchte MW, Steppe K. 2013. Sap-flux density measurement methods: working principles and applicability. Functional Plant Biology 40: 213-223.</Citation>
</Reference>
<Reference>
<Citation>Vergeynst LL, Dierick M, Bogaerts JAN, Cnudde V, Steppe K. 2015a. Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues. Tree Physiology 35: 400-409.</Citation>
</Reference>
<Reference>
<Citation>Vergeynst LL, Sause MGR, De Baerdemaeker NJF, De Roo L, Steppe K. 2016. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches. Tree Physiology 36: 786-796.</Citation>
</Reference>
<Reference>
<Citation>Vergeynst LL, Sause MGR, Hamstad MA, Steppe K. 2015b. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor. Frontiers in Plant Science 6: 494.</Citation>
</Reference>
<Reference>
<Citation>Wiley E, Hoch G, Landhäusser SM. 2017. Dying piece by piece: Carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress. Journal of Experimental Botany 68: 5221-5232.</Citation>
</Reference>
<Reference>
<Citation>Wiley E, Huepenbecker S, Casper BB, Helliker BR. 2013. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiology 33: 1216-1228.</Citation>
</Reference>
<Reference>
<Citation>Wittmann C, Pfanz H. 2008. General trait relationships in stems: a study on the performance and interrelationships of several functional and structural parameters involved in corticular photosynthesis. Physiologia Plantarum 134: 636-648.</Citation>
</Reference>
<Reference>
<Citation>Wittmann C, Pfanz H. 2016. The optical, absorptive and chlorophyll fluorescence properties of young stems of five woody species. Environmental and Experimental Botany 121: 83-93.</Citation>
</Reference>
<Reference>
<Citation>Zimmermann M. 1983. Xylem structure and the ascent of sap. Berlin, Germany: Springer-Verlag.</Citation>
</Reference>
<Reference>
<Citation>Zweifel R, Item H, Häsler R. 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiology 21: 869-877.</Citation>
</Reference>
<Reference>
<Citation>Zweifel R, Zeugin F. 2008. Ultrasonic acoustic emissions in drought-stressed trees - more than signals from cavitation? New Phytologist 179: 1070-1079.</Citation>
</Reference>
<Reference>
<Citation>Zwieniecki MA, Holbrook NM. 2009. Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends in Plant Science 14: 530-534.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>Pologne</li>
</country>
<region>
<li>Province de Flandre-Orientale</li>
<li>Région flamande</li>
</region>
<settlement>
<li>Gand</li>
</settlement>
<orgName>
<li>Université de Gand</li>
</orgName>
</list>
<tree>
<country name="Belgique">
<region name="Région flamande">
<name sortKey="De Roo, Linus" sort="De Roo, Linus" uniqKey="De Roo L" first="Linus" last="De Roo">Linus De Roo</name>
</region>
<name sortKey="Salom N, Roberto Luis" sort="Salom N, Roberto Luis" uniqKey="Salom N R" first="Roberto Luis" last="Salom N">Roberto Luis Salom N</name>
<name sortKey="Steppe, Kathy" sort="Steppe, Kathy" uniqKey="Steppe K" first="Kathy" last="Steppe">Kathy Steppe</name>
</country>
<country name="Pologne">
<noRegion>
<name sortKey="Oleksyn, Jacek" sort="Oleksyn, Jacek" uniqKey="Oleksyn J" first="Jacek" last="Oleksyn">Jacek Oleksyn</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32416019
   |texte=   Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32416019" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020